《F\&F》

F\&F Filipowski L.P.
Konstantynowska 79/81, 95-200 Pabianice, POLAND phone/fax (+48 42) $2152383 /(+4842) 2270971$ www.fif.com.pl; e-mail: biuro@fif.com.pl

MB-LI-4 Lo

Pulse counter, 4-channel, with Modbus RTU output

Do not dispose of this device in the trash along with other waste! According to the Law on Waste, electro coming from households free of chage and can give any amount to up to that end point of collection, as well as to store the occasion of the purchase of new equipment (in accordance with the principle of old-for-new, regardless of brand). Electro thrown in the trash or abandoned in nature, pose a threat to the environment and human health.

(E^{8}

Purpose

The MB-LI-4 pulse counter is used for counting the AC/DC signals generated by external devices to determine the number of completed work cycles and for exchanging the data via RS-485 port in accordance with the Modbus RTU protocol.

Functions

» 4 independent counters;
" Counter input designed to work with AC/DC signals $160 \div 265$ V;
» Factor adjustment (a floating-point value);
» Rescaled value (Number of pulses \times factor);
» Selecting a mode of state 1 trigger: high or low voltage;
» Selecting an input pulse edge (leading or trailing);
» Frequency filter that allows you to limit the maximum frequency of counted pulses (to eliminate interferences on the input of the counter);
» Memory of counter status after power failure;
» Digital input.

Functioning

The MB-LI-4 module is a four-channel one-way counter. Each channel is independent and counts the impulses in accordance with individual settings.
The results are presented in the form of a Number of pulses and rescaled value in a range from 0 to $\sim 4,29$ billion. Reading of the counter can be reset independently for each channel. Once the maximum Number of pulses (overflow) is reached, counter automatically resets and counts from 0 .
The module has configurable options of counting pulses with low or high signal and with leading or trailing edge.
In addition, counting input can be used as a DI digital input with the ability to read its state.
Reading the values of counted pulses, a rescaled value, adjustment of all counting parameters, communication and data exchange is carried out via RS-485 port using Modbus RTU communication protocol. Power is indicated by a green LED "U" light. Correct data exchange between the module and other device is indicated by the LED yellow "Tx" light.

Mounting

The use of anti-interference and surge filters (such as OP-230) is recommended.

It is recommended to use shielded twisted-pair cables to connect the module to another device.

When using shielded cables, ground the shields only on one side and as close to the device as possible.

Do not route signal cables in parallel in close proximity to high and medium voltage lines.

Do not install the module in the immediate vicinity of hi-gh-power electric receivers, electromagnetic measuring instruments, phase power control devices and other devices that may cause interference.

1. Before installing the module, set the selected Modbus communication parameters and measurement options.
2. Disconnect the power supply in distribution box.
3. Install the module on the rail.
4. Connect the module power supply to terminals $1-3$ as indicated.
5. Connect the A-B signal output (RS-485 port) to the Master device output.
6. Connect the signal wires to the counter inputs according to the selected trigger option (low or high signal).

Wiring diagram

Terminal description

COM $1 / 2$ — 9
12 COM 3/4

1-3 $9 \div 30 \mathrm{~V}$ DC power supply
4-6 RS-485 serial port
7 IN1 counter input
8 IN2 counter input
9 COM input (common) for IN1 and IN2
10 IN3 counter input
11 IN4 counter input
12 COM input (common) for IN3 and IN4

Communication settings reset

A configuration jumper is available under the module casing. Starting the controller with the jumper closed restores the factory settings of the communication parameters. To do this, remove the casing of the module and put the jumper on both pins. After the reset is done, remove the jumper.

Implement. of connection counting and digital inputs

Triggering level
high voltage

Triggering level low voltage

Security

1.Galvanic isolation between the IN..., COM... contacts and the rest of the circuit (min. 2.5 kV). and the rest of the system (min. 2.5 kV).
2. No galvanic isolation between module power supply and RS485 lines.
3. Overcurrent protection for power supply and communication inputs (up to a maximum of 60 V DC) with automatic return function.

An external control voltage is needed to trigger the input in any case. If the module's supply voltage is used for this, the galvanic separation between the control inputs and the power supply and communication is lost.

Modbus RTU protocol parameters

Communication parameters

Protocole Modbus RTU

Operating mode Slave

	Number of bits per second: 1200, 2400,
	$4800, \underline{9600} 19200,38400,57600,115200$
Port settings	Data bits: $\underline{8}$
(factory settings)	Parity: $\underline{\text { NONE, EVEN, ODD }}$
	Start bits: $\underline{1}$
	Stop bits: $1 / 1.5 / \underline{2}$

Communication parameters (cont.)

| Network address range
 (factory settings) |
| :--- |$\quad 1 \div 245(\underline{1})$

1: Read inputs status
(0×01 - Read Coils)
3: Read the values of a group of registers
(0×03 - Read Holding Register)
6: Set the value of a single register
(0×06) - Write Single Register)

Max. frequency of
queries
15 Hz

Communication registers
address
description
func.
atr.

256	Read current and write new base address: $1 \div 245$	$\begin{aligned} & 03 \\ & 06 \end{aligned}$	int	R/W
257	Read current and write the baud rate: 0:1200/1:2400/ 2:4800/3:9600/4:19200/ 5:38400/6:57600/7:115200	$\begin{aligned} & 03 \\ & 06 \end{aligned}$	int	R/W
258	Read current and write new parity value: 0:NONE/1:EVEN/2:ODD	$\begin{aligned} & 03 \\ & 06 \end{aligned}$	int	R/W

Communication registers (cont.)

address	description	func.	type	atr.
259	Read current and write new number of stop bits: $0: 1$ bit/1:1,5 bita/2:2 bity	$\begin{aligned} & 03 \\ & 06 \end{aligned}$	int	R/W
260	Restore the factory settings: Set the value 1.	06	int	W

Note!

Changes in communication parameters (baud rate, number of stop bits, parity) are only taken into account only after the power is restarted.

1024	Module working time [s]	03	int	R
\div	R1024 $\times 256^{2}+$ R102			

1026	Serial number
\div	R1026 $\times 256^{2}+$ R1027

1028 | Production date: 5 bits - day; |
| :--- |
| 4 bits - month; 7 bits - year |
| (without 2000) |

1029 Software version 03 int
1030 Execution: 0-Lo; 1-Hi 03 int R

1031
Identifier:

1035
$\mathrm{F} \&|\mathrm{~F}| \mathrm{MB}|-4| \mathrm{LI}$

Configuration jumper:
1039 0-open; 1-close
03 int
R

Converter does not support broadcast commands (address 0).

Digital input registers

address	description	func.	type	atr.
0	Read inputs status: $0 / 1-4$ bits $($ e.g. 1001) Order: $\|\ln 4\| \ln 3\|\ln 2\| \ln 1 \mid$	01	int	R
22	$\ln 1: \ln p u t$ status $0 / 1$	03	int	R
32	$\ln 2: \ln p u t$ status $0 / 1$	03	int	R
48	$\ln 3: \ln p u t$ status $0 / 1$	03	int	R
64	$\ln 4: \ln p u t$ status $0 / 1$	03	int	R

Counters registers

address
description
$\begin{array}{ll}17 \div 18 & \text { In1: Number of pulses } \\ \text { R18 } \times 256^{2}+\text { R17 }\end{array}$
R18 $\times 256^{2}+$ R17

In2: Number of pulses
$33 \div 34$
R34 $\times 256^{2}+$ R33

49 $\div 50 \quad$ In3: Number of pulses
$R 50 \times 256^{2}+$ R49

In4: Number of pulses
R66 $\times 256^{2}+$ R65
func.

03

03

03

03
int $\quad R$

R

Counters registers (cont.)

address	description	func.	type	atr.
$19 \div 20$	In1: Scaled value	03	float	R
$21 \div 22$	In1: Scaled value - integer part	03	int	R
$23 \div 24$	In1: Scaled value - fractional part: 6 digits $\times 0.000001(250000->0.25)$	03	int	R
31	In1: Counter reset. Enter value 0.	06	int	W
$35 \div 36$	In2: Scaled value	03	float	R
$37 \div 38$	In2: Scaled value - integer part	int	R	

| | In2: Scaled value - |
| :--- | :--- | :--- | :--- | :--- |
| $39 \div 40$ | fractional part: 6 digits |
| | $\times 0.000001(250000 \rightarrow 0.25)$ |$\quad 03 \quad$ int $\quad R$

47	In2: Counter reset.		
Enter value 0.	06	int	

$51 \div 52 \ln 3:$ Scaled value
03
float R

$53 \div 54$| In3: Scaled value - |
| :--- | :--- | :--- |
| integer part |$\quad 03 \quad$ int $\quad R$

$\ln 3$: Scaled value -
$55 \div 56$ fractional part: 6 digits $\times 0.000001$ (250000 -> 0.25)

Counters registers (cont.)

address	description	func.	type	atr.
63	In3: Counter reset. Enter value 0.	06	int	W
$67 \div 68$	In4: Scaled value	03	float	R
$69 \div 70$	In4: Scaled value - integer part	03	int	R
$71 \div 72$	In4: Scaled value - fractional part: 6 digits $\times 0.000001$ (250000 -> 0.25)	03	int	R
79	In4: Counter reset. Enter value 0.	06	int	W

Configuration registers

address description func. type atr.

| 512 | In1: min. pulse time $[\mathrm{ms}]$. | 03 | |
| :--- | :--- | :--- | :--- | :--- |
| Range $1 \div 15000$. | 06 | int | R/W |

| | In1: logic. | 03 | |
| :--- | :--- | :--- | :--- | :--- |
| 0: falling edge | 06 | int | R/W |
| 1: rising edge | 06 | | |

\(\left.$$
\begin{array}{lllll}514 & \begin{array}{l}\text { In1: multiplier. } \\
\text { Range } 1 \div 10000 .\end{array}
$$ \& 03

06\end{array}\right)\) int \begin{tabular}{l}
R/W

\multirow{3}{*}{515}

In1: divider. \& 03 \& int \& R/W
\end{tabular}

Configuration registers (cont.)

address description func. type atr.

528
In2: min. pulse time [ms].
Range $1 \div 15000$.
03
06
int \quad R/W

In2: logic.
529 0: falling edge
1: rising edge

530
In2: multiplier.
03
Range $1 \div 10000$.
03

06

531 | | In2: divider. | 03 | int |
| :--- | :--- | :--- | :--- |
| Range $1 \div 10000$. | 06 | R/W | |

	In3: min. pulse time [ms].	03	
Range $1 \div 15000$.	06	int	R/W

In3: logic.
545 0: falling edge
1: rising edge
03 06
int
R/W

546	In3: multiplier.	03	
Range $1 \div 10000$.	06	int	R/W

547 In3: divider. 03
Range $1 \div 10000$.
06
int \quad R/W

In4: min. pulse time [ms]. 03
560
Range $1 \div 15000$.
06

In4: logic.
561
$\begin{array}{ll}0: \text { falling edge } & 03 \\ 1: \text { rising edge } & 06\end{array}$
int \quad R/W

	Configuration registers (cont.)							
address	description	func.	type	atr.				
562	In4: multiplier.	03	int	R/W				
	Range $1 \div 10000$.	06						
563	In4: divider.	03	int	R/W				
	Range $1 \div 10000$.	06						

The ratio setting for the scaled value is the result of multiplying and dividing the set values of the registers (e.g. for In1, registers R514 and R515) Example:
factor 2: multiplier $=2$; divider=1 $(2 / 1=2)$
factor 1.68: multiplier $=168$; divider $=100(168 / 100=1.68)$
factor 0.68: multiplier $=68$; divider $=100(68 / 100=0.68)$
Default values:
logic = 1; pulse time $=5 \mathrm{~ms} ;$ multiplier $=1 ;$ divider $=1$

Legend:
R - read, W - write

Technical data

power supply $9 \div 30 \mathrm{VDC}$
number of counting inputscounting input voltagemaximum counting frequencymaximum number of pulsesinput circuit impedance
port
communication protocol
operating modepower indicationcommunication indication$6 \div 30 \mathrm{~V} \mathrm{AC} / D C$100 Hz
2^{32} (4.294.967.295)$\geq 10 \mathrm{k} \Omega$RS-485
Modbus RTUSlave
green LEDyellow LED
parametry komunikacjibaud rate (adjustable)$1200 \div 115200 \mathrm{bit} / \mathrm{s}$data bitsstop bitsparity bitaddress
EVEN/ODD/NONE1/1.5/2$1 \div 247$
power consumption 0.3 Wworking temperatureterminaltightening torquedimensionsmountingingress protection$-20 \div 50^{\circ} \mathrm{C}$$2.5 \mathrm{~mm}^{2}$ screw terminals
0.4 Nm1 module (18 mm)on TH-35 rail
IP20

Warranty

The F\&F products are covered by a warranty of the 24 months from the date of purchase. Effective only with proof of purchase. Contact your dealer or directly with us.

CE declaration

F\&F Filipowski L.P. declares that the device is in conformity with the essential requirements of The Low Voltage Directive (LVD) 2014/35/EU and the Electromagnetic Compatibility (EMC) Directive 2014/30/UE.
The CE Declaration of Conformity, along with the references to the standards in relation to which conformity is declared, can be found at www.fif.com.pl on the product page.

